On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation

  • SCI-E
  • EI
  • PUBMED
作者: Cao, Huaxiang;Li, Xinhua;Zhou, Bukang;Chen, Tao;Shi, Tongfei;Zheng, Jianqiang;Liu, Guangqiang;Wang, Yuqi
作者机构: Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
University of Science and Technology of China, Hefei, 230026, People's Republic of China
Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. xinhuali@issp.ac.cn
通讯机构: Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
语种: 英文
关键词: Metal-assisted chemical etching - Morphology evolution - Nano Sphere Lithography - Nanowire arrays - Polystyrene particle - Quantitative description - Thermal oxidation - Thermal oxidation process
期刊: Nanoscale Research Letters
ISSN: 19317573
年: 2017
卷: 12
期: 1
文献类别: pubmed:Journal Article;EI
所属学科: WOS学科类别:Nanoscience & Nanotechnology;Materials Science, Multidisciplinary;Physics, Applied;ESI学科类别:Physics;EI学科类别:549.3 Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals - 761 Nanotechnology - 802.2 Chemical Reactions - 815.1.1 Organic Polymers - 921 Mathematics - 933 Solid State Physics
入藏号: WOS:000394276600003;EI:20170703344368
基金类别: National Natural Science Foundation of China [51472247, 51671182]
摘要: We demonstrate the fabrication of the large-area arrays of vertically aligned Si/SiO<inf>2</inf>nanowires with full tunability of the geometry of the single nanowires by the metal-assisted chemical etching technique and the following thermal oxidation process. To fabricate the geometry controllable Si/SiO<inf>2</inf>nanowire (NW) arrays, two critical issues relating with the size control of polystyrene reduction and oxide thickness evolution are investigated. Through analyzing the morphology evolutions of polystyrene particles, we give a quantitative description on the diameter variations of polystyrene particles with the etching time of plasma etching. Based on this, pure Si NW arrays with controllable geometry are generated. Then the oxide dynamic of Si NW is analyzed by the extended Deal-Grove model. By control, the initial Si NWs and the thermal oxidation time, the well-aligned Si/SiO<inf>2</inf>composite NW arrays with controllable geometry are obtained. &copy;2017, The Author(s).
参考文献: Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35
Brongersma ML, Cui Y, Fan S (2014) Light management for photovoltaics using high-index nanostructures. Nat Mater 13(5):451–460
Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM (2011) Programmable nanowire circuits for nanoprocessors. Nature 470(7333):240–244
Luo L, Yang H, Yan P, Travis JJ, Lee Y, Liu N, Molina Piper D, Lee S-H, Zhao P, George SM et al (2015) Surface-coating regulated lithiation kinetics and degradation in Silicon nanowires for lithium ion battery. ACS Nano 9(5):5559–5566
Yu P, Wu J, Liu S, Xiong J, Jagadish C, Wang ZM (2016) Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11(6):704–737
Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19(5):744–748
Liu L, Peng K-Q, Hu Y, Wu X-L, Lee S-T (2014) Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution. Adv Mater 26(9):1410–1413
Chang S-W, Chuang VP, Boles ST, Ross CA, Thompson CV (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Funct Mater 19(15):2495–2500
Sim S, Oh P, Park S, Cho J (2013) Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-Ion batteries. Adv Mater 25(32):4498–4503
Kim S, Park J-S, Chang KJ (2012) Stability and segregation of B and P dopants in Si/SiO2 core–shell nanowires. Nano Lett 12(10):5068–5073
Jinyou X, Pengfei G, Zhijun Z, Yang L, Hailong Y, Yongsong L (2016) Eu-doped Si-SiO 2 core–shell nanowires for Si-compatible red emission. Nanotechnology 27(39):395703
Seo K, Yu YJ, Duane P, Zhu W, Park H, Wober M, Crozier KB (2013) Si microwire solar cells: improved efficiency with a conformal SiO2 layer. ACS Nano 7(6):5539–5545
Mallorquí AD, Alarcón-Lladó E, Mundet IC, Kiani A, Demaurex B, De Wolf S, Menzel A, Zacharias M, Fontcuberta i Morral A (2015) Field-effect passivation on silicon nanowire solar cells. Nano Res 8(2):673–681
Oh J, Yuan HC, Branz HM (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7(11):743–748
Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J (2013) Preparation of silicon@silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-Ion battery anode. ACS Appl Mater Interfaces 5(23):12340–12345
Wu Y, Yang P (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123(13):3165–3166
Kodambaka S, Tersoff J, Reuter MC, Ross FM (2006) Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys Rev Lett 96(9):096105
Fu YQ, Colli A, Fasoli A, Luo JK, Flewitt AJ, Ferrari AC, Milne WI (2009) Deep reactive ion etching as a tool for nanostructure fabrication. J Vac Sci Technol B: Microelectron Nanometer Struct–Process Meas Phenom 27(3):1520–1526
Juhasz R, Elfström N, Linnros J (2005) Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett 5(2):275–280
Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14(16):1164–1167
Yeom J, Ratchford D, Field CR, Brintlinger TH, Pehrsson PE (2014) Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv Funct Mater 24(1):106–116
Lee Y, Oh W, Dao VA, Hussain SQ, Yi J (2012) Ultrathin oxide passivation layer by rapid thermal oxidation for the silicon heterojunction solar cell applications. Int J Photoenergy 2012:1–5
Schliwinski HJ, Schnakenberg U, Windbracke W, Neff H, Lange P (1992) Thermal annealing effects on the mechanical properties of plasma‐enhanced chemical vapor deposited silicon oxide films. J Electrochem Soc 139(6):1730–1735
Sassella A, Borghesi A, Corni F, Monelli A, Ottaviani G, Tonini R, Pivac B, Bacchetta M, Zanotti L (1997) Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition. J Vac Sci Technol A 15(2):377–389
Haginoya C, Ishibashi M, Koike K (1997) Nanostructure array fabrication with a size-controllable natural lithography. Appl Phys Lett 71(20):2934
Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36(12):3770
Egorkin AV, Kalinin SV (2014) Two-dimensional modeling the process of thermal oxidation of non-planar silicon structures in CMOS-circuits’ isolation. In: 2014 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM): 2014
Kao D-B, McVittie JP, Nix WD, Saraswat KC (1988) Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Trans Electron Devices 35(1):25–37
Kurstjens R, Vos I, Dross F, Poortmans J, Mertens R (2012) Thermal oxidation of a densely packed array of vertical si nanowires. J Electrochem Soc 159(3):H300–H306
Coffin H, Bonafos C, Schamm S, Cherkashin N, Assayag GB, Claverie A, Respaud M, Dimitrakis P, Normand P (2006) Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers. J Appl Phys 99(4):044302

文件格式:
导出字段:
导出
关闭
On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation